ESPHome 2026.1.0-dev
Loading...
Searching...
No Matches
light_color_values.h
Go to the documentation of this file.
1#pragma once
2
4#include "color_mode.h"
5#include <cmath>
6
7namespace esphome::light {
8
9inline static uint8_t to_uint8_scale(float x) { return static_cast<uint8_t>(roundf(x * 255.0f)); }
10
45 public:
48 : state_(0.0f),
49 brightness_(1.0f),
51 red_(1.0f),
52 green_(1.0f),
53 blue_(1.0f),
54 white_(1.0f),
56 cold_white_{1.0f},
57 warm_white_{1.0f},
59
60 LightColorValues(ColorMode color_mode, float state, float brightness, float color_brightness, float red, float green,
61 float blue, float white, float color_temperature, float cold_white, float warm_white) {
62 this->set_color_mode(color_mode);
63 this->set_state(state);
64 this->set_brightness(brightness);
65 this->set_color_brightness(color_brightness);
66 this->set_red(red);
67 this->set_green(green);
68 this->set_blue(blue);
69 this->set_white(white);
70 this->set_color_temperature(color_temperature);
71 this->set_cold_white(cold_white);
72 this->set_warm_white(warm_white);
73 }
74
85 static LightColorValues lerp(const LightColorValues &start, const LightColorValues &end, float completion) {
86 // Directly interpolate the raw values to avoid getter/setter overhead.
87 // This is safe because:
88 // - All LightColorValues have their values clamped when set via the setters
89 // - std::lerp guarantees output is in the same range as inputs
90 // - Therefore the output doesn't need clamping, so we can skip the setters
92 v.color_mode_ = end.color_mode_;
93 v.state_ = std::lerp(start.state_, end.state_, completion);
94 v.brightness_ = std::lerp(start.brightness_, end.brightness_, completion);
95 v.color_brightness_ = std::lerp(start.color_brightness_, end.color_brightness_, completion);
96 v.red_ = std::lerp(start.red_, end.red_, completion);
97 v.green_ = std::lerp(start.green_, end.green_, completion);
98 v.blue_ = std::lerp(start.blue_, end.blue_, completion);
99 v.white_ = std::lerp(start.white_, end.white_, completion);
100 v.color_temperature_ = std::lerp(start.color_temperature_, end.color_temperature_, completion);
101 v.cold_white_ = std::lerp(start.cold_white_, end.cold_white_, completion);
102 v.warm_white_ = std::lerp(start.warm_white_, end.warm_white_, completion);
103 return v;
104 }
105
116 if (this->color_mode_ & ColorCapability::RGB) {
117 float max_value = fmaxf(this->get_red(), fmaxf(this->get_green(), this->get_blue()));
118 if (max_value == 0.0f) {
119 this->set_red(1.0f);
120 this->set_green(1.0f);
121 this->set_blue(1.0f);
122 } else {
123 this->set_red(this->get_red() / max_value);
124 this->set_green(this->get_green() / max_value);
125 this->set_blue(this->get_blue() / max_value);
126 }
127 }
128 }
129
130 // Note that method signature of as_* methods is kept as-is for compatibility reasons, so not all parameters
131 // are always used or necessary. Methods will be deprecated later.
132
134 void as_binary(bool *binary) const { *binary = this->state_ == 1.0f; }
135
137 void as_brightness(float *brightness, float gamma = 0) const {
138 *brightness = gamma_correct(this->state_ * this->brightness_, gamma);
139 }
140
142 void as_rgb(float *red, float *green, float *blue, float gamma = 0, bool color_interlock = false) const {
143 if (this->color_mode_ & ColorCapability::RGB) {
144 float brightness = this->state_ * this->brightness_ * this->color_brightness_;
145 *red = gamma_correct(brightness * this->red_, gamma);
146 *green = gamma_correct(brightness * this->green_, gamma);
147 *blue = gamma_correct(brightness * this->blue_, gamma);
148 } else {
149 *red = *green = *blue = 0;
150 }
151 }
152
154 void as_rgbw(float *red, float *green, float *blue, float *white, float gamma = 0,
155 bool color_interlock = false) const {
156 this->as_rgb(red, green, blue, gamma);
158 *white = gamma_correct(this->state_ * this->brightness_ * this->white_, gamma);
159 } else {
160 *white = 0;
161 }
162 }
163
165 void as_rgbww(float *red, float *green, float *blue, float *cold_white, float *warm_white, float gamma = 0,
166 bool constant_brightness = false) const {
167 this->as_rgb(red, green, blue, gamma);
168 this->as_cwww(cold_white, warm_white, gamma, constant_brightness);
169 }
170
172 void as_rgbct(float color_temperature_cw, float color_temperature_ww, float *red, float *green, float *blue,
173 float *color_temperature, float *white_brightness, float gamma = 0) const {
174 this->as_rgb(red, green, blue, gamma);
175 this->as_ct(color_temperature_cw, color_temperature_ww, color_temperature, white_brightness, gamma);
176 }
177
179 void as_cwww(float *cold_white, float *warm_white, float gamma = 0, bool constant_brightness = false) const {
181 const float cw_level = gamma_correct(this->cold_white_, gamma);
182 const float ww_level = gamma_correct(this->warm_white_, gamma);
183 const float white_level = gamma_correct(this->state_ * this->brightness_, gamma);
184 if (!constant_brightness) {
185 *cold_white = white_level * cw_level;
186 *warm_white = white_level * ww_level;
187 } else {
188 // Just multiplying by cw_level / (cw_level + ww_level) would divide out the brightness information from the
189 // cold_white and warm_white settings (i.e. cw=0.8, ww=0.4 would be identical to cw=0.4, ww=0.2), which breaks
190 // transitions. Use the highest value as the brightness for the white channels (the alternative, using cw+ww/2,
191 // reduces to cw/2 and ww/2, which would still limit brightness to 100% of a single channel, but isn't very
192 // useful in all other aspects -- that behaviour can also be achieved by limiting the output power).
193 const float sum = cw_level > 0 || ww_level > 0 ? cw_level + ww_level : 1; // Don't divide by zero.
194 *cold_white = white_level * std::max(cw_level, ww_level) * cw_level / sum;
195 *warm_white = white_level * std::max(cw_level, ww_level) * ww_level / sum;
196 }
197 } else {
198 *cold_white = *warm_white = 0;
199 }
200 }
201
203 void as_ct(float color_temperature_cw, float color_temperature_ww, float *color_temperature, float *white_brightness,
204 float gamma = 0) const {
205 const float white_level = this->color_mode_ & ColorCapability::RGB ? this->white_ : 1;
207 *color_temperature =
208 (this->color_temperature_ - color_temperature_cw) / (color_temperature_ww - color_temperature_cw);
209 *white_brightness = gamma_correct(this->state_ * this->brightness_ * white_level, gamma);
210 } else { // Probably won't get here but put this here anyway.
211 *white_brightness = 0;
212 }
213 }
214
216 bool operator==(const LightColorValues &rhs) const {
217 return color_mode_ == rhs.color_mode_ && state_ == rhs.state_ && brightness_ == rhs.brightness_ &&
218 color_brightness_ == rhs.color_brightness_ && red_ == rhs.red_ && green_ == rhs.green_ &&
219 blue_ == rhs.blue_ && white_ == rhs.white_ && color_temperature_ == rhs.color_temperature_ &&
221 }
222 bool operator!=(const LightColorValues &rhs) const { return !(rhs == *this); }
223
225 ColorMode get_color_mode() const { return this->color_mode_; }
227 void set_color_mode(ColorMode color_mode) { this->color_mode_ = color_mode; }
228
230 float get_state() const { return this->state_; }
232 bool is_on() const { return this->get_state() != 0.0f; }
234 void set_state(float state) { this->state_ = clamp(state, 0.0f, 1.0f); }
236 void set_state(bool state) { this->state_ = state ? 1.0f : 0.0f; }
237
239 float get_brightness() const { return this->brightness_; }
241 void set_brightness(float brightness) { this->brightness_ = clamp(brightness, 0.0f, 1.0f); }
242
244 float get_color_brightness() const { return this->color_brightness_; }
246 void set_color_brightness(float brightness) { this->color_brightness_ = clamp(brightness, 0.0f, 1.0f); }
247
249 float get_red() const { return this->red_; }
251 void set_red(float red) { this->red_ = clamp(red, 0.0f, 1.0f); }
252
254 float get_green() const { return this->green_; }
256 void set_green(float green) { this->green_ = clamp(green, 0.0f, 1.0f); }
257
259 float get_blue() const { return this->blue_; }
261 void set_blue(float blue) { this->blue_ = clamp(blue, 0.0f, 1.0f); }
262
264 float get_white() const { return white_; }
266 void set_white(float white) { this->white_ = clamp(white, 0.0f, 1.0f); }
267
269 float get_color_temperature() const { return this->color_temperature_; }
271 void set_color_temperature(float color_temperature) { this->color_temperature_ = color_temperature; }
272
275 if (this->color_temperature_ <= 0) {
276 return this->color_temperature_;
277 }
278 return 1000000.0 / this->color_temperature_;
279 }
281 void set_color_temperature_kelvin(float color_temperature) {
282 if (color_temperature <= 0) {
283 return;
284 }
285 this->color_temperature_ = 1000000.0 / color_temperature;
286 }
287
289 float get_cold_white() const { return this->cold_white_; }
291 void set_cold_white(float cold_white) { this->cold_white_ = clamp(cold_white, 0.0f, 1.0f); }
292
294 float get_warm_white() const { return this->warm_white_; }
296 void set_warm_white(float warm_white) { this->warm_white_ = clamp(warm_white, 0.0f, 1.0f); }
297
298 protected:
299 float state_;
302 float red_;
303 float green_;
304 float blue_;
305 float white_;
310};
311
312} // namespace esphome::light
This class represents the color state for a light object.
float get_state() const
Get the state of these light color values. In range from 0.0 (off) to 1.0 (on)
void set_color_mode(ColorMode color_mode)
Set the color mode of these light color values.
float get_brightness() const
Get the brightness property of these light color values. In range 0.0 to 1.0.
void as_ct(float color_temperature_cw, float color_temperature_ww, float *color_temperature, float *white_brightness, float gamma=0) const
Convert these light color values to a CT+BR representation with the given parameters.
float get_blue() const
Get the blue property of these light color values. In range 0.0 to 1.0.
float get_white() const
Get the white property of these light color values. In range 0.0 to 1.0.
float state_
ON / OFF, float for transition.
float get_color_temperature() const
Get the color temperature property of these light color values in mired.
void as_rgb(float *red, float *green, float *blue, float gamma=0, bool color_interlock=false) const
Convert these light color values to an RGB representation and write them to red, green,...
bool operator!=(const LightColorValues &rhs) const
void set_state(bool state)
Set the state of these light color values as a binary true/false.
static LightColorValues lerp(const LightColorValues &start, const LightColorValues &end, float completion)
Linearly interpolate between the values in start to the values in end.
void set_brightness(float brightness)
Set the brightness property of these light color values. In range 0.0 to 1.0.
float get_cold_white() const
Get the cold white property of these light color values. In range 0.0 to 1.0.
void set_blue(float blue)
Set the blue property of these light color values. In range 0.0 to 1.0.
void set_cold_white(float cold_white)
Set the cold white property of these light color values. In range 0.0 to 1.0.
void set_color_brightness(float brightness)
Set the color brightness property of these light color values. In range 0.0 to 1.0.
void set_color_temperature_kelvin(float color_temperature)
Set the color temperature property of these light color values in kelvin.
bool operator==(const LightColorValues &rhs) const
Compare this LightColorValues to rhs, return true if and only if all attributes match.
void set_warm_white(float warm_white)
Set the warm white property of these light color values. In range 0.0 to 1.0.
void as_cwww(float *cold_white, float *warm_white, float gamma=0, bool constant_brightness=false) const
Convert these light color values to an CWWW representation with the given parameters.
bool is_on() const
Get the binary true/false state of these light color values.
float get_green() const
Get the green property of these light color values. In range 0.0 to 1.0.
void set_state(float state)
Set the state of these light color values. In range from 0.0 (off) to 1.0 (on)
void set_color_temperature(float color_temperature)
Set the color temperature property of these light color values in mired.
float get_warm_white() const
Get the warm white property of these light color values. In range 0.0 to 1.0.
LightColorValues()
Construct the LightColorValues with all attributes enabled, but state set to off.
void as_binary(bool *binary) const
Convert these light color values to a binary representation and write them to binary.
float color_temperature_
Color Temperature in Mired.
LightColorValues(ColorMode color_mode, float state, float brightness, float color_brightness, float red, float green, float blue, float white, float color_temperature, float cold_white, float warm_white)
void as_rgbw(float *red, float *green, float *blue, float *white, float gamma=0, bool color_interlock=false) const
Convert these light color values to an RGBW representation and write them to red, green,...
ColorMode get_color_mode() const
Get the color mode of these light color values.
void set_white(float white)
Set the white property of these light color values. In range 0.0 to 1.0.
float get_red() const
Get the red property of these light color values. In range 0.0 to 1.0.
void set_green(float green)
Set the green property of these light color values. In range 0.0 to 1.0.
void set_red(float red)
Set the red property of these light color values. In range 0.0 to 1.0.
void normalize_color()
Normalize the color (RGB/W) component.
float get_color_brightness() const
Get the color brightness property of these light color values. In range 0.0 to 1.0.
void as_brightness(float *brightness, float gamma=0) const
Convert these light color values to a brightness-only representation and write them to brightness.
void as_rgbct(float color_temperature_cw, float color_temperature_ww, float *red, float *green, float *blue, float *color_temperature, float *white_brightness, float gamma=0) const
Convert these light color values to an RGB+CT+BR representation with the given parameters.
float get_color_temperature_kelvin() const
Get the color temperature property of these light color values in kelvin.
void as_rgbww(float *red, float *green, float *blue, float *cold_white, float *warm_white, float gamma=0, bool constant_brightness=false) const
Convert these light color values to an RGBWW representation with the given parameters.
bool state
Definition fan.h:0
ColorMode
Color modes are a combination of color capabilities that can be used at the same time.
Definition color_mode.h:49
@ UNKNOWN
No color mode configured (cannot be a supported mode, only active when light is off).
@ RGB
Color can be controlled using RGB format (includes a brightness control for the color).
@ COLOR_TEMPERATURE
Color temperature can be controlled.
@ WHITE
Brightness of white channel can be controlled separately from other channels.
@ COLD_WARM_WHITE
Brightness of cold and warm white output can be controlled.
float gamma_correct(float value, float gamma)
Applies gamma correction of gamma to value.
Definition helpers.cpp:595
uint8_t end[39]
Definition sun_gtil2.cpp:17
uint16_t x
Definition tt21100.cpp:5